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Abstract: Building efficient and correct system power-management strategies relies on efficient power architecture decision
making as well as respecting structural dependencies induced by such architecture. Transaction level modelling allows a rapid
exploration, verification and evaluation of alternative power-management architectures and strategies. This study introduces an
efficient methodology for making system power decisions at transaction level (TL) by adding and verifying power intent and
management capabilities into TL models. A generic framework that abstracts relevant concepts of the IEEE 1801 unified
power format standard and implements assertion-based contracts is used throughout the methodology. A TL-model example

is considered to validate the methodology.

1 Introduction

As systems-on-chip (SoCs) grow in embedded functionalities
and complexity, the importance of power management
increases as well. Approaches such as power gating and
adaptive voltage scaling are widely used to reduce power
in SoCs. The most basic form of these approaches is to
partition the chip logic into multiple voltage regions or
power domains, each with its own power supply and
power control unit. This leads to introduction of additional
power elements mediating interfaces between power
domains [1]. These elements contribute in defining the
per-domain power states. So, the different operating power
modes of a SoC can be seen as the different combinations
of these power domains’ states. They are controlled by a
power-management block to implement an appropriate
power-management strategy. A good strategy would be to
efficiently enable functional resources based on the
required application load (e.g. reading an email on a
smartphone or capturing pictures). In such a case, each
operating power mode corresponds to a different system
use case. This requires a good understanding of both
hardware and software parts of the final system, as well as
their interaction with power management. Indeed,
placement and behaviour of each element in power
architecture can create dependencies between
power domains which constraints the legal operating power
modes. For example, a wrong placement of
power elements or selection of irrelevant behaviour for
them can alter the intended system functionality. Therefore
verification becomes compulsory and constitutes a complex
task. The recent unified power format (UPF)
standardisation [2] enables defining and verifying the
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power intent that represents the power-management
architecture (set of power domains, power switches supply
networks etc.) and strategy (legal system power modes and
power transitions) specifications, throughout a register-
transfer level (RTL) to graphic data system II (GDSII)
design flow [3]. However, earlier power intent is added to
the system, higher the power reduction and easier the
verification would be. Transaction-level (TL) models [4]
provide faster simulation times than RTL ones and are
mainly dedicated to verify the whole system including the
embedded software. Hence, specifying power intent and the
corresponding power-management block with the above-
mentioned capabilities at TL is a promising solution to
validate a power-management structure early and to handle
complex verification issues. Besides, this allows a rapid
exploration of different power design alternatives and early
decision making of the most energy-efficient one before
starting design at RTL. Unfortunately, taking advantage of
UPF standard capabilities at TL is not possible since there is
still no power-aware TL-simulator understanding power
intent and constraints as captured by UPF.

In this paper, we propose a ‘PwARCH’ generic framework
that abstracts relevant power concepts specified by the
IEEE 1801 (UPF) standard. By following a four-stage
methodology, this framework allows adding high-level
power architecture to a TL-model and building a power-
management strategy upon it. A verification process has
been also built in order to check different classes of
contracts that express properties between power and
functional architecture and are implemented using assume
and guarantee assertion types. Moreover, our methodology
enables exploring different power design alternatives and
choosing the most energy-efficient one.
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The paper is organised as follows. Section 2 gives an
overview of related works and highlights our contributions.
Section 3 describes the ‘PWARCH’ framework. In Section
4, our methodology flow is explained. The case study in
Section 5 applies our proposal to a TL-model example.
Finally, Section 6 summarises our paper.

2 Related work

Many ad hoc approaches have addressed power modelling
and estimation at different transaction levels. Since there is
no standard way to create TL-power models for a system or
intellectual property (IP) cores, each of these approaches
support different criteria to explore power profiles in a
transaction-level modelling (TLM) context. Most of the
proposed approaches focus on the instrumentation of
existing TL simulation platforms to apply such profiles.
Usually, power profiles are fed with power consumption
metrics coming typically from IP datasheets or low-level
simulations. Instrumentation-based solutions mainly range
from transaction-based power modelling solutions to
component-centric ones. The authors in [5] propose a
method to build transaction-based models that resume all
types and granularities of transfers between the different
blocks of an existing TL-platform as well as the different
relationships among them. However, Lee et al. [6] and Ben
et al. [7] focus on power modelling of each hardware
component in a TL-platform. These two solutions are not
generic enough since they suppose that a cycle-accurate
simulation platform already exists, which is not always the
case. Similarly, the authors in [8] adopt a state-based power
profiling technique applied to each component in a TL-
platform. Nevertheless, this method assumes that dynamic
power management) and dynamic voltage and frequency
scaling power architectures of each considered IP core are
available. Contrary to this work, we consider in this paper a
strong relationship between specific low-power architecture,
a system power-management strategy controlling it and the
resulting power savings. Our approach proposes a way to

investigate this relationship starting from TL-models.
Compared with the previously mentioned works, it is also
an instrumentation-based approach. In particular, it is
generic enough to be applied to any TL-model
Furthermore, our power models are neither component-
based ones, nor transaction-based. Instead, we use state-
based models relying on power-domain reasoning. Such
reasoning has been involved throughout the proposed
methodology by abstracting relevant UPF concepts to adapt
them to a TL modelling usage. Some works [9, 10] have
considered IEEE 1801 (UPF) specifications and simulation
semantics to achieve simulation-based or formal power-
aware verification. However, as far as we know, none of the
state-of-the art works have used UPF semantics at TL. The
key difference with the above-mentioned related works is
that we not only perform early TL power estimation, but
also deal with power-aware design, management and
verification issues at this modelling level.

3 Overview of the PWARCH framework

Our main objective is to augment an existing SystemC/TLM
model with power intent and control capabilities including
power-aware verification. The ‘PwARCH’ framework has
been developed as a static software library to help achieve
that goal in an instrumentation-based manner. Fig. 1 depicts
its generic set of C4++ classes where each group serves a
specific purpose. The main features of the framework are
explained in the following sections.

3.1 Abstracting UPF concepts

3.1.1 UPF standard concepts: The UPF standard [2]
offers semantics for implementation and verification of
low-power design intent. It describes a hardware description
language (HDL) functionality subset of a power distribution
and the behaviour of its power elements in a side file. This
file serves the entire RTL to GDSII design flow and can be
modified throughout this flow in an incremental process
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(Fig. 2). Fig. 3 gives an example [11] of the main power
elements used by UPF semantics to specify the power
design intent explained as follows: the power-domain
concept in the UPF standard is a centric concept and is
defined as the group of elements from the logic hierarchy
that share the same primary supply nets (SNs) [2]. In other
words, each power domain (e.g. CRC_GEN power domain
in Fig. 3a) is supplied by a power net (e.g. VDD_HIGH in
Fig. 3a) and overlays a functional block (e.g. the Checker
block in Fig. 3a). As a consequence, each power domain
can be controlled individually. Power switches are in charge
of shutting down or powering up the power domains
depending on the value changes of their control signals
(e.g. crc_sd signal). Retention registers (RRs) are used to
save the internal state of crucial modules when they are
switched off. Level shifters are used for communication
between domains with different supply voltages. Isolation
elements are used to avoid undefined signal values at the
output of a power-gated domain. Among the main concepts
of UPF, we find the power state table (PST) which defines
the system power-management strategy. Fig. 3b depicts an
example of a PST for the power distribution architecture of
Fig. 3a as it can be specified using the UPF standard.
Columns of a PST represent local states of power domains in
terms of their power SN states. However, lines of a PST
represent the different system power modes. Each
line corresponds to one legal combination of specific power-
domain states. In general, a system power mode (line of a
PST) refers to a set of functional tasks matching a specific
system use scenario. For instance, the RX_ON power mode
in Fig. 3b corresponds to the receiving with disabled cyclic
redundancy check (CRC) checking scenario.

As can be seen in Fig. 3a, a power controller must be
defined as an HDL functional block that uses the PST in
order to control states of all these power elements through
specific control signals (e.g. crc_sd control signal in Fig. 3a
is used to control the state of the CRC_GEN domain’s
power switch).
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Fig. 2 Starting UPF flow from TL
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a UPF-based power distribution elements
b PST for power control

3.1.2 Using UPF concepts at TL of modelling: As far
as we know, TL-simulators that capture UPF semantics are
not available yet. Moreover, we can observe that only a
subset of power components from UPF semantics can be
used to express TL power intent, as their behaviour is
compatible with the TLM system view. Despite this
compatibility, some attributes and simulation behaviour of
UPF components considered at TL must even be abstracted.
For instance, power switch controls have to be included
transparently in a TLM simulation. The ‘PwARCH’
framework helps to build abstracted UPF specifications
according to power gating and multi-voltage power
requirements. By starting power design intent at TL, we
aim at generating a UPF constraints file describing the most
energy-efficient system power architecture, and being the
golden low-power reference to the RTL design team
(Fig. 2). As shown in Fig. 1 (abstract UPF concepts part),
composition hierarchy between abstract UPF components in
‘PwARCH’ is the same as in UPF-defined semantics.
For instance, SNs are instantiated in the context of an
existing power domain. Unlike UPF, we added other power
components [such as design element (DE) objects] and
composition constraints (e.g. PST objects are only
instantiated in the context of a composite power domain).
This facilitates managing hierarchical structure and control
and mapping the functional design to the power-aware one.

Fig. 4 represents the power-aware design corresponding to
the UPF-based one in Fig. 3 which is built using the abstract
UPF concepts in a PWARCH library. Fig. 4 also shows how
such a constructed power-aware design is mapped to the
functional TL design. In the following, basic features of
each power component that are captured in our framework
are highlighted and exemplified using Fig. 4.

Each functional SystemC module is attached to a DE
object. For instance, the design element DE3 in the power-
aware design part in Fig. 4 points to the ‘Receiver’
functional block in the system TL design part (dashed lines
in Fig. 4 represent C 4+ + pointers to objects). As can be
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power-aware design to a target system TL design.

The key element in our approach is a power-domain (PD)
object that consists in a collection of DE objects that share
the same primary SNs, hence can be controlled
individually. Indeed, we preserved the same definition of a
PD as in the UPF standard specification. A hierarchical
instantiation of PD objects is allowed in PWARCH. This
facilitates the control of their states and their attached power
components. For that, we have defined a PD of type
‘container’ as a power domain that includes at least another
PD instantiated in its context that we called a ‘nested’ PD.
In particular, a nested PD can also be a ‘container PD’ for
other power domain. Fig. 4d presents the PDs hierarchy
structure of the power distribution in Fig. 4a. For instance,
the PD_TX_AON power domain is here a ‘container PD’
with regard to the PD_CRC_GEN power domain and ‘a
nested PD’ with regard to the PD_TOP power domain. To
apply the power gating technique, abstract power switch
(PSw) objects must be added at the boundary of the
switched PDs. Each one is characterised by at least one
input SN and only one output SN. Controlling the state of a
PSw is equivalent to changing the state of its output SN
Supply net objects can be either of type ‘primary’ (hence of
type power or ground net), or ‘retention’ or ‘isolation’.
In Fig. 4a, VDD_HIGH is a ‘primary’ SN for the
PD_TX_AON power domain, whereas VDD_RET is a
‘retention’ SN for the PD_CRC_GEN power domain. Since
it supplies retention registers of a PD so that their states
remain internally saved during a power off period, a
retention SN must be an ‘always on’ power supply and
must never be switched off. Each SN is characterised by
a (state,voltage) pair. In particular, the output SN of a PSw
is of type ‘switched’ which is in addition characterised by
a (state,input net) pair used to control the states of PSw
objects. A ‘Switched” SN must be specified as the ‘primary’
power net of a power-gated PD. For instance, the output SN
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VDD_HIGH_CRC_VIRTUAL, is the primary SN of the
PD_CRC_GEN power domain. Given the definition of a
PD adopted in PWARCH and mentioned earlier, putting the
‘Transmitter’ block (DE1) and the ‘Checker’ block (DE2)
in two separate PDs (respectively in PD_TX_AON and
PD_CRC_GEN) is explained by the fact that these blocks
are supplied by distinct primary power nets (respectively)
VDD_HIGH and VDD_HIGH_CRC_VIRTUAL primary
SNs). It is also worth mentioning that depending only on its
attached primary power net, a PD can be ‘power-gated’ if
its power net is of type switched (e.g. PD_CRC_GEN and
PD_RECEIVER in Fig. 4a are power-gated domains). In
this case, it can be entirely powered-down. Moreover, a PD
can be of type ‘voltage-scaled’ if its attached primary power
net has more than one state. Otherwise, a PD can be ‘non-
scaled’ if it has a unique primary power net with a single
state and not of a switched type (e.g. PD_TX_AON power
domain in Fig. 4a is a ‘non-scaled PD’ having VDD_HIGH
as a primary power net).

Concerning the PST concept, one of the fundamental
concepts of UPF, we have preserved in PwWARCH its
semantics given by the UPF specification. In particular, a
PST object instantiated from PwARCH represents a two-
dimensional static table that captures the global power states
of a PD of type ‘container’. For example, although the PST
in Fig. 4b has been kept the same as that of Fig. 35, it has
been attached to the PD_TOP power domain when specified
using PWARCH since it resumes the power-management
strategy of the whole system. In the rest of this paper, we
denote each column of the PST by local power state (LPS)
and each line by global power state (GPS) .

According to a specified PST, legal transitions between its
GPSs must be specified using PSTrans objects. Fig. 4c
illustrates an example of legal transitions specified
according to the PST of Fig. 4b. For instance, note that
transitioning from the global power state CRC_ON to
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RX_ON is specified as unauthorised. A PST object and its
related PSTrans set are required by a power-management
unit (PMU) functional block in order to dynamically put
the system in the appropriate system power mode, hence
accordingly adjust the power distribution state. The features
and structure of this functional block added to the system
TL design (Fig. 4) are explained later.

3.2 Building power-aware verification

Our verification solution is not only similar to UPF that
mainly focuses on verifying functional failure and wrong
placement of power components but also emphasises
verification of different component interactions resulting
from our methodology. Depending on the types of
communicating components, possible errors have been
classified into well-defined categories of contracts as
explained later. According to our approach, two kinds of
interactions between two components can be distinguished.
A component may simply require using another component
to perform a specific functionality. It can also modify some
of the other component’s characteristics as a part of its
functionality. To be carried out in a safe and correct way,
these kinds of interactions must be characterised by a set of
assume/guarantee properties [12] that form a component
contract. Several supports for the use of contracts have been
proposed whether as development methodologies or even as
programming languages. In many of them [12-14],
contracts are part of the program, and the compiler
generates defensive code that may raise exceptions at
run-time when a contract is violated. As we target a
simulation-based verification, contracts in our work consist
in executable specifications that are monitored at run-time.
In ‘PwARCH’, assume and guarantee properties are seen
as two types of assertions that form a contract and raise
an exception or report an error when a property is violated
during simulation. A generic class ‘assertions’ has been
defined (Fig. 1) with corresponding assume and guarantee
methods. A Satisfy method can be called as well by assume
or guarantee methods to verify that a specific condition is
satisfied.

To add contracts inside a class, the latter must inherit from
the assertions class in the ‘PwARCH’ library. Note that in
Fig. 1, the assertions class is inherited by all classes of the
‘PwARCH’ library which are involved in the power
architecture specification or its control. Furthermore, the
assume and guarantee assertions of a class can be switched
on or off. Hence, power-aware verification will not be
processed unless it has been explicitly enabled by the user
before starting a simulation. These added assertions, neither
affect the functional behaviour of the system, nor cause side
effects on individual objects. Nevertheless, defensive
programming implies writing additional code used in
particular to verify the arguments of the assume, guarantee
and satisfy methods. Such additional codes have been
implemented in the ‘PwARCH’ library and hence, are
hidden to the user in order to facilitate and speed up the
verification process.

3.3 Power analysis and estimation

A power monitor is attached to each PD object and it
automatically updates its power values using its power
structure and its LPS. Each power monitor is triggered
when its PD receives a power event. When such an event
occurs, it provokes a change in at least a non-switched SN
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state or a PSw state. To capture such events, an observer
such as an SNObserver object is attached to each
non-switched SN and a PSwObserver object is attached to
each PSw (Fig. 1). Owing to the hierarchical PDs
construction, a PD state change during the simulation will
automatically and recursively update the power values of
PDs in higher levels of hierarchy.

4 Power domain-based methodology

We propose a power-domain-based methodology to add
power-management capabilities to the different functional
parts of a SoC described in SystemC/TLM. Fig. 5 illustrates
the overall flow of the proposed methodology. It is mainly
composed of three stages processed sequentially as
indicated in Fig. 5. A fourth stage is dedicated for
verification and occupies an orthogonal position regarding
the previous stages. The methodology is iterative allowing
the designer to explore different power design alternatives
and retain the most energy-efficient one. Note also that the
different stages are complementary and dependent on
the ’PwWARCH’ library. In the following, the main purposes
of each stage are explained.

4.1 Power intent specification stage

At this stage, the designer configures the system power intent
by instantiating adequate objects from ‘PwARCH’. In the first
phase, the transaction traces resulting from a TL functional
simulation of the embedded software inform about possible
correlations between hardware (HW) blocks in order to
identify power reduction opportunities (e.g. gathering for
instance the strongly correlated blocks in the same PD).
Then, a power design is specified by instantiating from
PwARCH the required PDs, supply network distribution
and observers. This power design is mapped to the existing
HW architecture by attaching DE objects to functional
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modules. Technology data and available low-level power
values are attributed to DE objects and used to update
power consumption values. In the second phase, according
to the PDs boundaries and transaction traces, a system
power-management strategy is established by specifying a
PST and its PSTrans set. Here, each possible combination
of PDs states is bound to an appropriate part of the software
(SW) flow, with respect to inter-power objects dependencies.

4.2 PMU modelling stage

To control local and global power states, a TL PMU is
modelled as an additional SystemC module communicating
with other modules of the platform through bus
transactions. Since it uses a PST, a PMU activity only
makes an impact on the GPS of the container PD of this
PST. For each GPS in a PST will correspond to a
transaction in the functional SystemC code that must be
preceded by a power control transaction (PwCTr) one.
A PwCTr writes to a PMU control register requesting this
PMU to set the container PD in a specific GPS. The DE
issuing such a transaction must be blocked as long as the
PMU performs the required transitions. We consider that
each DE holds a particular event and remains waiting for it
whenever it issues a PwCTr. When the PMU finishes its
activity, it notifies this event so that the suspended design
element resumes its activity. Our PMU generic model is
mainly composed of a power manager (PM) and a set of
domain power controllers (DPCs). Each DPC module
changes the LPS of a power-gated domain between sleep
and wake-up states. The PM module only changes the LPS
of the non-switched PDs and requests adequate DPCs to
change their domains’ states. For instance, Fig. 4 depicts a
PMU block composed of a DPC1 to control the state of the
PD_CRC_GEN power-gated domain, a DPC2 to control
that of the PD_RECEIVER power-gated domain and a PM
that coordinates the activity of DPC1 and DPC2 according
to the requested power mode.

4.3 Full power-aware simulation stage

At this stage, we simulate the resulting TL power-managed
behaviour. It is processed in parallel with the verification
one. During simulation, functional coherence between the
augmented TL-model and the power design needs to be
verified. The system power-aware behaviour is proved
coherent if no verification properties are violated during
simulation. Furthermore, PSwObservers and SNObservers
instantiated at the power intent specification stage will
handle the power and energy values update at run-time and
generate log files at the end of the simulation. When
plotted, these files’ values help in analysing and comparing
different power-management solutions, as well as selecting
the most energy-efficient power design.

4.4 Power-aware verification stage

Power-management  features added throughout our
methodology flow may generate different types of errors.
In order to ensure that each stage has been correctly
performed, a contract-based dynamic verification process
is added. As shown in Fig. 5, this verification stage
is processed orthogonally to the previous ones. The
objective is to identify bugs related to added power-
management features. The functional behaviour of the

292
© The Institution of Engineering and Technology 2012

TL-platform is supposed to be correct before applying it to
our methodology.

Three types of components are handled throughout the
methodology flow:

e Power components: represent power objects from the
abstract UPF concepts part of ‘PWARCH’ used to specify
the power intent of a TL-design.

e Functional components: represent IPs of the considered
TL-model.

o Mixed components: represent PMU modules and their
sub-modules (i.e. DPC and PM modules). They are
responsible to set power states of functional components
according to a power-management architecture.

Depending on the required interaction of components at
each stage of the methodology, contracts have been
classified into four different classes. Each class gathers all
possible assume (precondition), guarantee (postcondition)
and satisfy (invariant) properties between two specific types
of components. Properties belonging to each class of
contracts ensure that each component uses the other
components safely and correctly during simulation.

The different classes of contracts are detailed in the
following sections:

4.4.1 Contracts of class 1: This class of contracts
specifies the interactions between the power components of
a design. All properties related to this class are inserted into
the appropriate power components’ code. Actually, they are
already fully implemented in ‘PwARCH’. Their objective is
to verify the correctness of a power architecture structure
including the hierarchy and composition relationships
between its power elements. A typical error is to forget to
attach at least one design element to a PD. In that case, the
PD is not necessary. Furthermore, each system power mode
specification (a line of a PST) must respect structural
dependencies between power-domain partitions. This kind
of error can be detected when simulating the system after
the power intent specification stage. In addition, this class
of contracts is used to ensure that the power domain
ordering rules are not violated during simulation. These
rules define the order that must be respected to turn some
PDs on or off. They are imposed by a specific hierarchical
composition of PDs and a particular placement of power
switches. For instance, let us consider the following
example: given a container power domain PD, and a PDy,
power domain that is nested in PD,. As a consequence,
PDy, and PDy; can be individually switched using,
respectively, their power switches PSw, and PSwy;.
Obviously, by considering the hierarchical relationship
between PD, and PDy;, the output SN of PSw, represents
an input SN for PSwy,. Therefore PD,, must be already
switched off before turning off the PD, power domain. This
property can be considered as an assume part of a contract.
It must also be checked that all PDs which are powered by
the PSwy output SN (whether nested in PDy or not) are
powered down once PD, is switched off. This property
represents the guarantee part of the same contract. Note that
such a contract specifies the behaviour of the power
switches according to the SNs. The properties used to
check this kind of specification are added to the power
switch class of ‘PwARCH’ as shown in Fig. 6a. The errors
related to PD ordering rules are examples of violated
contracts of class 1 which can only be checked after the
PMU modelling stage. That is, because the power-
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Void Power_Switch::Set_OFF_State( ) {

/l/powered down

//Switching off a power domain requires that all its nested power domains (if they exist) are already

Assume ( Check Nested Domains( ), “Invalid state transition of the power switch” + this->GetSwitchName( ) +
“due to an invalid state of a nested power domain”, LINE, FILE );

//Functional code: setting the power switch OFF state

//All power switches having an input supply net connected to the primary power net (output of a power /switch

/I of the powered down domain must be switched off as well.

Guarantee ( Check_Output_Dep( ), “a primary input supply net connected to the output of the power switch™+
this->GetSwitchName( ) + “is not in a valid state”, LINE, FILE );

a

while (1) {

wait (...) ;

//The block is required to belong to a switched off power domain before its blocking on the wait statement
Assume (PD is_inactive( ), «the power domain to which this block belongs is active», LINE, FILE);

/IThe block waits for an event ( external or internal) or for a time
/Making sure that the block does not belong to a switched off power domain so as to be able to

// resume its activity (after the notification of the expected event or the expiration of the time delay)
Guarantee (!PD _is_inactive( ), «the power domain to which this block belongs is inactive», LINE, FILE ) ;

Fig. 6 Examples of contract-checking instrumentation

a Example of a class 1 contract inserted in the ‘Power_Switch’ class of ‘PwARCH’ library

b Example of a class 3 contract inserted in a hardware block module

management behaviour is only defined at this stage through
the addition of power control transactions and the
integration of the PMU in the platform.

4.4.2 Contracts of class 2: Class 2 contracts target the
specification of interactions between ‘mixed components’,
that is, between the PM and DPC components inside each
PMU. Furthermore, it concerns the specification of
interactions between ‘mixed components’ and ‘power
components’. All contracts of class 2 have to be manually
added inside a PMU source code. This is the reason why
they can only be verified after the PMU modelling stage.
These contracts aim at checking the correct functionality of
PMU modules as well as their integration in TL-models.
For instance, a power state transition can be required during
simulation whereas it is missing in the graph of power
transitions (set of PSTrans). Such a miss can be corrected in
two different ways: either, a new transition (PSTrans) is
specified, or the PMU performs legal intermediate
transitions until reaching the required system power mode.

Another example of class 2 contracts consists in checking
that each DPC correctly performs the wake-up or sleep
transition sequences. During such transitions, it must be
verified that the states of specific power objects (power
switches and retention SNs) in a switched PD have been
changed in a specific order by the corresponding DPC.

The specifications of interactions between a PM and DPCs
belong to contracts of class 2 as well. A DPC that has
switched off a power domain whereas the PM has requested
to power it on represents a serious error. This kind of issue
is caused by an erroneous functionality of the PM or the
DPC generic module. Furthermore, the PMU functionality
must identify and respect specific PDs dependencies. For
instance, let us consider again the example of PD, and
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PDy; mentioned earlier (in class 1 contracts section). In this
case, the PM is not allowed to request a PD, switch-off as
long as the transition of PDy; to OFF is not over. More
generally, simultaneous transition requests (to DPCs) to
switch-off or on a power domain can be error-prone. These
contracts of class 2 are used to specify an order of
transitions between specific states of PDs.

4.4.3 Contracts of class 3: Contracts of class 3 specify
relations between ‘functional’ and ‘power components’.
They are checked at the final stage (i.e. when simulating the
power-managed behaviour of a TL-model).

On the one side, a functional hardware block can perform
different activities. Each of these activities can be launched
further to specific settings of internal registers of this block,
the exchanged transactions at its interface, or its internally
triggered events. To be performed, an activity can require
specific power properties to be satisfied by the block.
Among such properties, we can mention a specific state of
the block’s power domain or a specific value of an internal
block’s register.

For instance, when a functional block receives or transmits
a transaction, its power domain must not be switched off.
Otherwise, an error must be detected reporting a wrong
PST line specification. The mechanism used to check these
properties is based on the observers (DEObserver class
from ‘PwARCH’) attached to each DE object. These
observers will indicate an error whenever the power
architecture properties of the block do not match with the
power requirements of the executed activity.

On the other side, a block becomes most of the time
functionally idle when a wait statement in its source code is
reached. In this case, the power requirements just before
and after wait statements may be different. For instance,
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Fig. 7 Case-study: architecture and transaction flow analysis

a Case study platform
b Activity waveforms of hardware components
¢ Activity percentage per component

when a wait on an event statement is reached in a block, the
power domain of this block can be downright powered down.
However, it must be verified that this power domain has been
already woken up just before the expected event is triggered
and before the block resumes its normal activity. Fig. 6b
illustrates how these properties can be specified by
instrumenting the blocks’ codes with class 3 contracts. We
note that the source code of the whole TL-model is
supposed to be accessible in this work and can be
instrumented. Hence, adding this kind of class 3 contracts is
done in general by surrounding the SystemC wait statement
with assume and guarantee properties.

4.4.4 Contracts of class 4: Contracts of class 4 specify
relations between ‘functional’ and ‘mixed components’ at
the final sequential stage (Fig. 5). Verification focuses here
on the compatibility between the PMU functionality and the
activity of hardware modules extended with power control
transactions. Indeed, the PMU activity must not alter the
hardware modules activity during simulation. For example,
to set up a system power mode, a PMU performs specific
power domain state transitions as specified in the
corresponding PST line. However, performing a power
domain state transition requires that all the hardware
modules of that PD are functionally idle (i.e. waiting for an
event, time duration or a signal) during this transition. This
contract represents an invariant property, that is, checked
before and after a power-domain transition is performed by
a PMU sub-component. Similarly, when an activity is
detected in a hardware block, it must be verified that the
power domain of this block is not undergoing a power state
transition. A violation of this contract proves a wrong
synchronisation between this hardware block and the PMU.

Ideally, contracts of each class should be checked after a
specific sequential stage. This facilitates identifying the
sources of errors. However, our verification process is
flexible since each class of contracts can also be verified
after a following stage. For instance, if the contracts of class
2 have not been verified after the PMU modelling stage,
they can be checked during the full power-aware simulation
stage.
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5 Application to a case study

To demonstrate our methodology, we consider an existing
approximately timed [4] TL-platform (Fig. 7a) with no
power-management features. The embedded application
implements Conway’s game of life. First, a software flow
analysis is performed in order to determine possible system
use cases. This task was automated by attaching observers
on input and output ports of each component. By detecting
these ports state changes, these observers trace the activity
of the corresponding component during simulation. As a
result, the waveform shown in Fig. 7b was obtained and
statistics about the total percentage activity of each
component was reported as depicted in Fig. 7c. Contrary to
the VGA, memory and bus components which were active
most of the simulation time, the CPU component was
functionally idle for successive time durations.

A viable power architecture solution must hence allow
energy savings of the CPU during its periods of idleness.
This is achieved by powering the CPU down (by placing a
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Fig.9 Power-aware architecture alternatives

power switch in its power domain) or by supplying it with a
lower primary supply voltage (as considered in our power
intent solutions). Furthermore, note that such activity traces
facilitate defining a PST according to a power architecture
specification. For instance, the VGA and the memory
activities are strongly correlated when displaying an image
(Fig. 7b). Therefore in a ‘display’ system power mode of a
PST, the power domains of these components must be both
powered-up. In the following, we give scenarios that match
with the GPSs of the PST shown in Fig. 8a according to
the power design of Fig. 9b. The CPU computes a first
image by reading and writing from/to the SRAM (initialise
scenario). Then, the peripherals are initialised (allon
scenario). The VGA controller uses a double buffer to
avoid visual glitches when the image changes. First, it reads
the image from the memory (first buffer) and displays it
(display scenario). Games of life iterations are cadenced by
the timer. Hence, an interrupt that is raised by the timer, is
driven to the interrupt controller which drives it to the CPU.

Then, the CPU handles this interrupt by computing a new
image in a second buffer while communicating again with the
SRAM (process_INT scenario). Henceforth, the VGA
controller is informed by the CPU about the new image
address and will display this new image after the display
reaches the end of the screen (display scenario again). A
button mapped as a general purpose input/output (GPIO) is
checked periodically (handle_GPIO scenario). This SW flow
is then periodically repeated. As shown in Fig. 9, different
power architecture alternatives have been elaborated and
evaluated while taking into account this SW flow. Fig. 10
depicts as well the hierarchy and characteristics of the different
power domains according to alternatives (b)—(d) of Fig. 9.
Note that the power domains partitioning and hierarchy, as
well as the membership of hardware blocks (design elements)
per power domain are different in each of these alternatives. In
particular, alternative (a) corresponds to a unique and always-
on (i.e. never switched off) power domain that groups all the
platform HW blocks (Fig. 9a). Owing to lack of space, only

Hierarchy
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0 | PD_Top_Level " PD_Top_Level PD_Top_Level
1
'H PD_Periph
3
Euponant e .. e T T l
0 voltage-scaled (VDDCPU=12 V0.5 V) power-gated with retention & state dependency on the

& container

1
2 power-gated with retention
3

non-scaled (always-on ) & VODSoC=08V |

power-gated without retention & container

state of the PD with index 2
Power-gated with retention
Power-gated with retention
Power-gated with retention

@ ;| B

i I

Excapt the PD_Top_Level, sach power domain is nested in af keast one other power domain
(s=e the power domains hisrarchy relalionship above). In case of a power domain of type

container, we paricularly mention this in this ist

Fig. 10 Power domains hierarchy and characteristics in each power domain partitioning alternative
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Table 1 Excerpts of power-aware verification results

Inserted fault Total errors

Violated assertions

The component throwing Contract

number the assertion error class
the transition from display to 155 the transition from display to handle_GPIO PST power PMU 2
handle_GPIO PST power modes is not authorised
modes is not authorised An activity is noticed in the GPIO etc block whereas GPIO hardware 3
PD_GPIO is inactive block
in all_on PST power mode, 6 Invalid state transition of the power switch S; owing to an power 1
PD_Periph is powered down invalid state of its input supply net switch Sj
whereas An activity is noticed in design element VGA whereas VGA hardware 3
the PD_GPIO is powered on PD_Periph is inactive block
An activity is noticed in design element timer whereas timer hardware 3
PD_Periph is inactive block
only the VGA unit activity 44 The PM cannot perform a power state transition of the PM 4
is blocked just after sending PD_CPU because CPU design element is still functionally
a power active
control transaction to the To display an image, the system power mode does not PM 3
PMU in order match the display power mode configuration as specified in
to set the display power the PST
mode

the PST and legal power state transitions (PSTrans)
corresponding to alternative (b) are shown in Fig. 8.

HW components of this TL-model have been implemented
on a Virtex-4 FPGA device. The Xilinx Power Estimator tool
has been then used to get technology-dependent power
characteristics (such as leakage current and load
capacitance) which are used to feed power models of each
DE. The results show that (b)—(d) alternatives in Fig. 9
provide at least 90% of the energy savings compared with a
unique power-domain design [(a) alternative]. The (b)
alternative represents the most energy-efficient power
domains partitioning since about 58% of energy savings is
observed compared with (d) alternative and 7.3% compared
with (c). Furthermore, the obtained power-aware simulation
speed remains similar compared with the non-instrumented
version. For instance, simulation time for alternative (b) is
only 0.03% slower than alternative (a).

Table 1 shows a set of violated contracts further to errors
made when elaborating the (b) alternative (Fig. 9b) using
our methodology. Here, simulation is only run after the
implementation of all stages. Violated assume and
guarantee properties were reported during the simulation
period (16s) in a log file. Note that because of a single
inserted fault multiple violated contracts of different classes
were  detected.  This  demonstrates  the  strong
complementarity and coherence between all classes of
contracts implemented by our methodology.

6 Conclusion and future work

We have presented a novel, efficient and generic
methodology to augment a TL-model with power including
verification capabilities. This methodology mainly aims at
an early decision making of the most energy-efficient and
correct power-management design alternative. It also allows
mapping TL hardware architecture to a power one using
UPF-based concepts in a generic ‘PwWRACH’ framework.
Future works will focus on the power intent construction
and exploration of power design alternatives as well as on
automating the insertion of the remaining types of contracts
into the TL simulation model. We are also investigating the
formal validation of our methodology to enable a maximum
low-power property-coverage testing.
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